Потенциальная энергия и потенциал Электрическая емкость

Динамика материальной точки Понятия силы, массы, количества движения. Законы Ньютона. Динамика тел при вращательном движении. Понятия момента сил, момента инерции, момента количества движения. Уравнение динамики вращательного движения твердого тела. Условие равновесия тел. Вес тела и его измерение. Закон сохранения момента количества движения.

Задачи

Потенциальная энергия и потенциал поля точечных зарядов

15.1. Точечный заряд Q = 10 нКл, находясь в некоторой точке поля, обладает потенциальной энергией П = 10 мкДж. Найти потенциал φ этой точки поля.

5.2. При перемещении заряда Q=20 нКл между двумя точками поля внешними силами была совершена работа А=4 мкДж. Определить работу A1 сил поля и разность Δφ потенциалов этих точек поля.

15.3. Электрическое поле создано точечным положительным зарядом Q1=6 нКл. Положительный заряд Q2 переносится из точки А этого поля в точку В (рис. 15.5). Каково изменение потенциальной энергии ΔП, приходящееся на единицу переносимого заряда, если r1=20 см и r2=50 см?

15.4. Электрическое поле создано точечным зарядом Ql=50 нКл. Не пользуясь понятием потенциала, вычислить работу А

внешних сил по перемещению точечного заряда Q2= -2 нКл из точки С в точку В

(рис. 15.6), если r1=10 см, r2=20 см. Определить также изменение ΔП потенциальной энергии системы зарядов.

15.5. Поле создано точечным зарядом Q=1 нКл. Определить потенциал φ поля в точке, удаленной от заряда на расстояние r=20 см.

15.6. Определить потенциал φ электрического поля в точке, ,удаленной от зарядов Q1= -0,2 мкКл и Q2=0,5 мкКл соответственно на r1=15 см и r2=25 см. Определить также минимальное и максимальное расстояния между зарядами, при которых возможно решение.

15.7. Заряды Q1=1 мкКл и Q2= -1 мкКл находятся на расстоянии d=10 см. Определить напряженность Е и потенциал φ поля в точке, удаленной на расстояние r= 10 см от первого заряда и лежащей на линии, проходящей через первый заряд перпендикулярно направлению от Q1 к Q2.

15.8. Вычислить потенциальную энергию П системы двух точечных зарядов Q1=100 нКл и Q2=10 нКл, находящихся на расстоянии d=10 см друг от друга.

15.9. Найти потенциальную энергию П системы трех точечных зарядов Q1=10 нКл, Q2=20 нКл и Q3= -30 нКл, расположенных в вершинах равностороннего треугольника со стороной длиной a=10 см.

15.10. Какова потенциальная энергия П системы четырех одинаковых точечных зарядов Q=10 нКл, расположенных в вершинах квадрата со стороной длиной а=10 см? . [an error occurred while processing this directive]

15.11. Определить потенциальную энергию П системы четырех точечных зарядов, расположенных в вершинах квадрата со стороной длиной a=10 см. Заряды одинаковы по модулю Q=10 нКл,но два из них отрицательны. Рассмотреть два возможных случая расположения зарядов.

 15.12. Поле создано двумя точечными зарядами +2Q и -Q, находящимися на расстоянии d=12 см друг от друга. Определить геометрическое место точек на плоскости, для которых потенциал равен нулю (написать уравнение линии нулевого потенциала).

5.13. Система состоит из трех зарядов - двух одинаковых по величине Q1=|Q2|=1 мкКл и противоположных по знаку и заряда Q=20 нКл, расположенного точке 1 посередине между двумя другими зарядами системы (рис. 15.7). Определить изменение потенциальной энергии ΔП системы при переносе заряда Q из точки 1 в точку 2. Эти точки удалены от отрицательного заряда Q1 на расстояние а=0,2 м.

Потенциал поля линейно распределенных зарядов

15.14. По тонкому кольцу радиусом R=10 см равномерно распределен заряд с линейной плотностью τ= 10 нКл/м. Определить потенциал φ в точке, лежащей на оси кольца, на расстоянии а=5 см от центра.

Тонкие стержни образуют квадрат со стороной длиной а. Стержни заряжены с линейной плотностью τ= 1,33 нКл/м. Найти потенциал φ в центре квадрата.

Градиент потенциала и его связь с напряженностью поля Бесконечная плоскость равномерно заряжена с поверхностной плотностью σ=4 нКл/м2. Определить значение и направление градиента потенциала электрического поля, созданного этой плоскостью.

Движение заряженных частиц в электрическом поле Электрон находится в однородном электрическом поле напряженностью Е=200 кВ/м. Какой путь пройдет электрон за время t= 1 нс, если его начальная скорость была равна нулю? Какой скоростью будет обладать электрон в конце этого интервала времени?

Свойства диэлектриков

Механический момент, действующий на диполь с электрическим моментом р, помещенный в однородное электрическое поле с напряженностью Е, M=[pE], или M=pE sin α, где α - угол между направлениями векторов р и Е.

Контрольная работа № 3 1. Уравнение состояния идеального газа. 2. Распределение Максвелла - Больцмана. Средние характеристики молекул газа. Длина пробега, скорость. Энергия. 3. Циклические процессы и реальные тепловые двигатели. 4. Явление поверхностного натяжения. Капиллярные методы дефектоскопии поверхности. 5. Интерференция. Принципы просветленной оптики. Интерференционные покрытия бижутерии. Интерференционные методы контроля поверхности. 6. Дифракция света. Условия наблюдения дифракции. Дифракционная решетка. Дифракция рентгеновских лучей на пространственной решетке. 7. Оптические характеристики материалов. Геометрическая оптика. Оптические приборы. 8. Вращение плоскости поляризации. Сахарометрия.
Поляризация диэлектриков