Физические основы термодинамики Напряженность электрического поля .

Атомное ядро. Строение и свойства атомных ядер. Заряд, размеры и масса атомного ядра. Массовое и зарядовое числа. Состав ядра. Нуклоны. Свойства и природа ядерных сил. Дефект массы и энергия связи ядра. Происхождение и закономерности альфа-, бета-, гамма- излучений атомных ядер. Закон радиоактивного распада.

Задачи

Взаимодействие точечных зарядов

13.1. Определять силу взаимодействия двух точечных зарядов Q1=Q2=l Кл, находящихся в вакууме на расстоянии r=1 м друг от друга.

13.2. Два шарика массой m=0,l г каждый подвешены в одной точке на нитях длиной L=20 см каждая. Получив одинаковый заряд, шарики разошлись так, что нити образовали между собой угол a=60°. Найти заряд каждого шарика.

13.3. Два одинаковых заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол a. Шарики погружаются в масло плотностью p0=8×102 кг/м3. Определить диэлектрическую проницаемость e масла, если угол расхождения нитей при погружении шариков в масло остается неизменным. Плотность материала шариков р=1,6×103 кг/м3.

13.4. Даны два шарика массой m=l г каждый. Какой заряд Q нужно сообщить каждому шарику, чтобы сила взаимного отталкивания зарядов уравновесила силу взаимного притяжения шариков по закону тяготения Ньютона? Рассматривать шарики как материальные точки.

13.5. В элементарной теории атома водорода принимают, что электрон обращается вокруг ядра по круговой орбите. Определить скорость v электрона, если радиус орбиты r=53 пм, а также частоту n вращения электрона.

13.6. Расстояние между двумя точечными зарядами Q1=l мкКл и Q2=–Q1 равно 10 см. Определить силу F, действующую на точечный заряд Q=0,1 мкКл, удаленный на r1=6 см от первого и на r2=8 см от второго зарядов.

13.7. В вершинах правильного шестиугольника со стороной а=10 см расположены точечные заряды Q, 2Q, 3Q, 4Q, 5Q, 6Q (Q=0,1 мкКл). Найти силу F, действующую на точечный заряд Q, лежащий в плоскости шестиугольника и равноудаленный от его вершин.

13.8. Два одинаковых проводящих заряженных шара находятся на расстоянии r=60 см. Сила отталкивания F1 шаров равна 70 мкН. После того как шары привели в соприкосновение и удалили друг от друга на прежнее расстояние, сила отталкивания возросла и стала равной F2=160 мкН. Вычислить заряды Q1 и Q2, которые были на шарах до их соприкосновений. Диаметр шаров считать много меньшим расстояния между ними.

13.9. Два одинаковых проводящих заряженных шара находятся на расстоянии r=30 см. Сила притяжения F1 шаров равна 90 мкН. После того как шары были приведены в соприкосновение и удалены друг от друга на прежнее расстояние, они стали отталкиваться с силой F2=160 мкН. Определить заряды Q1 и Q2, которые были на шарах до их соприкосновения. Диаметр шаров считать много меньшим расстояния между ними.

13. 10. Два положительных точечных заряда Q и 4Q закреплены на расстоянии l=60 см друг от друга. Определить, в какой точке на прямой, проходящей через заряды, следует поместить третий заряд Q1 так, чтобы он находился в равновесии. Указать, какой знак должен иметь этот заряд для того, чтобы равновесие было устойчивым, если перемещения заряда возможны только вдоль прямой, проходящей через закрепленные заряды.

13.11. Расстояние l между свободными зарядами Q1=180 нКл и Q2=720 нКл равно 60 см. Определить точку на прямой, проходящей через заряды, в которой нужно поместить третий заряд Q3 так, чтобы система зарядов находилась в равновесии. Определить величину и знак заряда. Устойчивое или неустойчивое будет равновесие?

13.12. Три одинаковых заряда Q=l нКл каждый расположены по вершинам равностороннего треугольника. Какой отрицательный заряд Q1 нужно поместить в центре треугольника, чтобы его притяжение уравновесило силы взаимного отталкивания зарядов? Будет ли это равновесие устойчивым?

13.13. В вершинах квадрата находятся одинаковые заряды Q=0,3 нКл каждый. Какой отрицательный заряд Q1 нужно поместить в центре квадрата, чтобы сила взаимного отталкивания положительных зарядов была уравновешена силой притяжения отрицательного заряда?

Описание реальных систем. Реальные газы. Пределы применимости законов идеального газа. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Жидкости. Особенности молекулярно-кинетического строения жидкостей. Ближний порядок в молекулярном строении жидкостей. Явление поверхностного натяжения. Капиллярные методы дефектоскопии поверхности. Жидкие кристаллы и их применение в индикаторах информации.
Физика примеры решения задач