Физические основы термодинамики Напряженность электрического поля .

Волновые свойства света. Интерференция в тонких пленках. Принципы просветленной оптики. Торговые марки. Бижутерия. Интерференционные методы контроля поверхности. Когерентность и ее использование в технике. Голография. Дифракция света. Дифракционная решетка. Дифракция рентгеновских лучей на пространственной решетке. Формула Вульфа-Брэгга. Изучение структуры кристаллов. Поляризация света. Поляроиды и поляризационные призмы. Закон Малюса. Вращение плоскости поляризации. Сахарометрия.

Работа расширения газа

11.18. Водород массой m=4 г был нагрет на ΔT=10 К при постоянном давлении. Определить работу А расширения газа.

11.19. Газ, занимавший объем V1=12 л под давлением p=100 кПа, был изобарно нагрет от температуры T1=300 К до T2 =400 К. Определить работу А расширения газа.

11.20. Какая работа А совершается при изотермическом расширении водорода массой m=5 г, взятого при температуре T=290 К, если объем газа увеличивается в три раза?

11.21. При адиабатном сжатии кислорода массой m=1 кг совершена работа А =100 кДж. Определить конечную температуру T2 газа, если до сжатия кислород находился при температуре T1=300 К.

11.22. Определить работу А адиабатного расширения водорода массой m=4 г, если температура газа понизилась на ΔT=10 К.

11.23. Азот массой т=2 г, имевший температуру T1=300 К, был адиабатно сжат так, что его объем уменьшился в n=10 раз. Определить конечную температуру T2 газа и работу А сжатия.

11.24. Кислород, занимавший объем V1=l л под давлением p1=1,2 МПа, адиабатно расширился до объема V2=10 л. Определить работу А расширения газа

Первое начало термодинамики

11.25. Азот массой m=5 кг, нагретый на ΔT=150 К, сохранил неизменный объем V. Найти: 1) количество теплоты Q, сообщенное газу; 2) изменение ΔU внутренней энергии; 3) совершенную газом работу А.

11.26. Водород занимает объем V1=10 м3 при давлении p1=100 кПа. Газ нагрели при постоянном объеме до давления p2=300 кПа. Определить: 1) изменение ΔU внутренней энергии газа; 2) работу А, совершенную газом; 3) количество теплоты Q, сообщенное газу.

11.27. При изохорном нагревании кислорода объемом V=50 л давление газа изменилось на Δp=0,5 МПа. Найти количество теплоты Q, сообщенное газу.

11.28. Баллон вместимостью V=20 л содержит водород при температуре T=300 К под давлением p=0,4 МПа. Каковы будут температура T1 и давление p1, если газу сообщить количество теплоты Q=6 кДж?

11.29. Кислород при неизменном давлении р=80 кПа нагревается. Его объем увеличивается от V1=l м3 до V2=3 м3. Определить: 1) изменение ΔU внутренней энергии кислорода; 2) работу А, совершенную им при расширении; 3) количество теплоты Q, сообщенное газу.

11.30. Азот нагревался при постоянном давлении, причем ему было сообщено количество теплоты Q=21 кДж. Определить работу А, которую совершил при этом газ, и изменение ΔU его внутренней энергии.

11.31. Кислород массой m=2 кг занимает объем V1=1 м3 и находится под давлением p1=0,2 МПа. Газ был нагрет сначала при постоянном давлении до объема V2=3 м3, а затем при постоянном объеме до давления p2=0,5 МПа. Найти: 1) изменение внутренней энергии ΔU газа; 2) совершенную им работу А; 3) количество теплоты Q, переданное газу. Построить график процесса.

11.32. Гелий массой m=l г был нагрет на ΔT=100 К при постоянном давлении р. Определить: 1) количество теплоты Q, переданное газу; 2) работу А расширения; 3) приращение ΔU внутренней энергии газа.

11.33. Какая доля ω1 количества теплоты Q1, подводимого к идеальному газу при изобарном процессе, расходуется на увеличение ΔU внутренней энергии газа и какая доля ω2 — на работу А расширения? Рассмотреть три случая, если газ: 1) одноатомный; 2) двухатомный; 3) трехатомный.

11.34. Водяной пар расширяется при постоянном давлении. Определить работу А расширения, если пару передано количество теплоты Q=4 кДж.

11.35. Азот массой m=200 г расширяется изотермически при температуре Т=280 К, причем объем газа увеличивается в два раза. Найти: 1) изменение ΔU внутренней энергии газа; 2) совершенную при расширении газа работу А; 3) количество теплоты Q, полученное газом.

11.36. В цилиндре под поршнем находится азот массой m=0,6 кг, занимающий объем V1=1,2 м3 при температуре Т=560 К. В результате подвода теплоты газ расширился и занял объем V2=4,2 м3, причем температура осталась неизменной. Найти: 1) изменение ΔU внутренней энергии газа; 2) совершенную им работу A; 3) количество теплоты Q, сообщенное газу.

11.37. Водород массой m=10 г нагрели на ΔT=200 К, причем газу было передано количество теплоты Q=40 кДж. Найти изменение ΔU внутренней энергии газа и совершенную им работу А.'

11.38. При изотермическом расширении водорода массой m=1 г, имевшего температуру T=280 К, объем газа увеличился в три раза. Определить работу А расширения газа и полученное газом количество теплоты Q.

При изотермическом расширении кислорода, содержавшего количество вещества ν=l моль и имевшего температуру Т=300 К, газу было передано количество теплоты Q=2 кДж. Во сколько раз увеличился объем газа?

Какое количество теплоты Q выделится, если азот массой т=1 г, взятый при температуре T=280 К под давлением p1=0,1 МПа, изотермически сжать до давления p2=l МПа?

Круговые процессы. Термический КПД. Цикл Карно

Энтропия Смешали воду массой m1=5 кг при температуре T1=280 К с водой массой m2=8 кг при температуре Т2=350 К. Найти: 1) температуру θ смеси; 2) изменение ΔS энтропии, происходящее при смешивании

Внутренняя энергия реального газа Поверхностное натяжение

Формула Пуазейля. Объем жидкости (газа), протекающей за время t через длинную трубку, где r — радиус трубки; l – ее длина; Δp – разность давлений на концах трубки; η – динамическая вязкость (коэффициент внутреннего трения) жидкости.

Пример. В баллоне вместимостью V=8 л находится кислород массой m=0,3 кг при температуре T=300 К. Найти, какую часть вместимости сосуда составляет собственный объем молекул газа.

Пример. Углекислый газ, содержащий количество вещества v=l моль находится в критическом состоянии. При изобарном нагревании газа его объем V увеличился в k=2 раза. Определить изменение DТ температуры газа, если его критическая температура Ткр=304 К. Решение. Для решения задачи удобно воспользоваться уравнением Ван-дер-Ваальса в приведенной форме, т. е. в такой форме, когда давление р, молярный объем Vm и температура T реального газа с соответствующими критическими параметрами представлены в виде следующих отношений: .

Из этих равенств получим: .

Пример. Найти добавочное давление р внутри мыльного пузыря диаметром d=10 см. Определить также работу А, которую нужно совершить, чтобы выдуть этот пузырь.

Решение. Пленка мыльного пузыря имеет две сферические поверхности — внешнюю и внутреннюю. Обе поверхности оказывают давление на воздух, заключенный внутри пузыря. Так как толщина пленки чрезвычайно мала, то диаметры обеих поверхностей практически одинаковы. Поэтому добавочное давление р=2×2s/r, где r — радиус пузыря. Так как r=d/2, то p=8s/d.

Пример. Вода подается в фонтан из большого цилиндрического бака (рис. 12.2) и бьет из отверстия II—II со скоростью v2=12 м/с. Диаметр D бака равен 2 м, диаметр d сечения II—II равен 2 см. Найти: 1) скорость v1 понижения воды в баке; 2) давление p1, под которым вода подается в фонтан; 3) высоту h1 уровня воды в баке и высоту h2 струи, выходящей из фонтана.

Пример. В сосуде с глицерином падает свинцовый шарик. Определить максимальное значение диаметра шарика, при котором движение слоев глицерина, вызванное падением шарика, является еще ламинарным. Движение считать установившимся. Решение. Если в вязкой жидкости движется тело, то вместе с ним, как одно целое, движется и прилипший к телу слой жидкости. Этот слой вследствие внутреннего трения увлекает за собой и соседние слои. Возникающее при этом движение жидкости является ламинарным или турбулентным в зависимости .от размеров в формы тела и его скорости. Характер движения зависит также от свойств жидкости и определяется безразмерным числом Рейнольдса.

Уравнение Ван-дер-Ваальса В сосуде вместимостью V=10 л находится азот массой m=0,25 кг. Определить: 1) внутреннее давление р' газа: 2) собственный объем V¢ молекул.

Определить давление р, которое будет производить кислород, содержащий количество вещества n=l моль, если он занимает объём V=0,5 л при температуре T=300 К. Сравнить полученный результат с давлением, вычисленным по уравнению Менделеева — Клапейрона.

Экспериментальное обоснование основных идей квантовой механики. Тепловое излучение и квантовая природа света. Абсолютно черное тело. Законы излучения черного тела. Квантовая гипотеза и формула Планка. Тепловизоры. Использование тепловизоров. Фотоэффект. Законы фотоэффекта. Уравнение Эйнштейна для внешнего фотоэффекта. Энергия, масса и импульс фотона. Давление света.
Физика примеры решения задач