Колебания и волны Физика курс лекций

Тонкие линзы. Изображение предметов с помощью линз

Раздел оптики, в котором законы распространения света рассматриваются на основе представления о световых лучах, называется геометрической оптикой. Под световыми лучами понимают нормальные к волновым поверхностям линии, вдоль которых распространяется поток световой энергии. Геометрическая оптика, оставаясь приближенным методом построения изображений в оптических системах, позволяет разобрать основные явления, связанные с прохождением через них света, и является поэтому основой теории оптических приборов.

Линзы представляют собой прозрачные тела, ограниченные двумя поверхностями (одна из них обычно сферическая, иногда цилиндрическая, а вторая — сферическая или плоская), преломляющими световые лучи, способные формировать оптические изображения предметов. Материалом для линз служат стекло, кварц, кристаллы, пластмассы и т. п. По внешней форме (рис. 232) линзы делятся на: 1) двояковыпуклые; 2) плосковыпуклые; 3) двояковогнутые; 4) плосковогнутые; 5) выпукло-вогнутые; 6) вогнуто-выпуклые. По оптическим свойствам линзы делятся на собирающие и рассеивающие.

Линза называется тонкой, если ее толщина (расстояние между ограничивающими поверхностями) значительно меньше по сравнению с радиусами поверхностей, ограничивающих линзу. Прямая, проходящая через центры кривизны поверхностей линзы, называется главной оптической осью. Для всякой линзы существует точка, называемая оптическим центром линзы, лежащая на главной оптической оси и обладающая тем свойством, что лучи проходят сквозь нее не преломляясь. Оптический центр О линзы для простоты будем считать совпадающим с геометрическим центром средней части линзы (это справедливо только для двояковыпуклой и двояковогнутой линз с одинаковыми радиусами кривизны обеих поверхностей; для плосковыпуклых и плосковогнутых линз оптический центр О лежит на пересечении главной оптической оси со сферической поверхностью).

Для вывода формулы тонкой линзы — соотношения, связывающего радиусы кривизны R1 и R2 поверхностей линзы с расстояниями а и b от линзы до предмета и его изображения, — воспользуемся принципом Ферма,* или принципом наименьшего времени: действительный путь распространения света (траектория светового луча) есть путь, для прохождения которого свету требуется минимальное время по сравнению с любым другим мыслимым путем между теми же точками.

* П. Ферма (1601—1665) — французский математик и физик.

Рассмотрим два световых луча (рис. 233) — луч, соединяющий точки А и В (луч АОВ), и луч, проходящий через край линзы (луч АСВ), — воспользовавшись условием равенства времени прохождения света вдоль АОВ и АСВ. Время прохождения света вдоль АОВ

где N = n/n1 — относительный показатель преломления (п и n1 — соответственно абсолютные показатели преломления линзы и окружающей среды). Время прохождения света вдоль АСВ равно

Так как t1= t2, то

 (166.1)

На грань стеклянной призмы под углом 30° падает луч света. Преломляющий угол призмы 60°. Показатель преломления стекла 1,5. На какой угол от первоначального направления отклоняется вышедший из призмы луч? Ответ представьте в градусах и округлите до целого числа
Квантовая природа излучения