Вычисление производной Дифференциал функции

Математика задачи примеры решения

Система координат.

 Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой- либо системе координат должно однозначно определяться. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат.

Декартова система координат.

 Зафиксируем в пространстве точку О и рассмотрим произвольную точку М.

Вектор  назовем радиус- вектором точки М. Если в пространстве задать некоторый базис, то точке М можно сопоставить некоторую тройку чисел – компоненты ее радиус- вектора.

 Определение. Декартовой системой координат в пространстве называется совокупность точки и базиса. Точка называется началом координат. Прямые, проходящие через начало координат называются осями координат.

1-я ось – ось абсцисс

2-я ось – ось ординат

3-я ось – ось апликат

  Чтобы найти компоненты вектора нужно из координат его конца вычесть координаты начала.

Дифференциальное исчисление функции одной переменной

Вычисление производной

Формулы вычисления производной некоторых элементарных функций получены в курсе средней школы:

1.      С' = 0, где С – константа.

2.      n) ' = n×xn-1, где n – натуральное число

3.      (ax)'= axlna, где а>0, a ¹ 1. В частности, (ех)' = ех

4.      , где а>0, a ¹ 1. В частности,

5.      (sinx)' = cosx

6.      (cosx)' = -sinx

В курсе средней школы установлены основные правила дифференцирования.

Пусть u = u(x) и v = v(x) – функции, дифференцируемые в точке х. Тогда в этой точке дифференцируемы функции u+v, u×v, . Последнее при условии, что v(x) ¹ 0. Причем

(u+v)' = u'+v'

(u×v)' = u'v+uv'

Следствием последних трех соотношений являются следующие два: (сu)' = cu', где с – константа, и (u-v)' = u'-v'

Используя правило нахождения производной частного, легко получаются формулы:   и , которые выполняются для любого х, при котором существует tgx и cosx ¹ 0 или существует ctgx и sinx¹0.

Производная Основные понятия Пусть дана функция y = f(x). Рассмотрим два значения ее аргумента: исходное х0 и новое х. Разности = х-х0 и D y = f(x)-f(x0) = y-y0 называются соответственно приращением аргумента и приращением функции в точке х0. Теорема ( о связи дифференцируемости и непрерывности). Если функция у = f(x) дифференцируема в точке х0, то она непрерывна в этой точке.

Производная обратной функции Теорема. Пусть функция х = f(y) монотонна и дифференцируема в некотором интервале (a, b) и имеет в точке у этого интервала производную f'(y), не равную нулю. Примеры. Найти производную функции.

Производная степенной функции с любым действительным показателем Известно, что (xn)' = nxn-1 для натурального n. Пусть теперь n любое дейст­вительное число и х>0. Справедливо тождество xn = enlnx. Тогда у = enlnx – сложная функция и ее производная вычисляется следующим образом: y' = (enlnx)' = enlnx(nlnx)' = enlnx =  xn = nxn-1.

Уравнение плоскости по одной точке и двум векторам,

 коллинеарным плоскости.

 Пусть заданы два вектора  и , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы  должны быть компланарны.

 Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали.

  Теорема. Если в пространстве задана точка М0(х0, у0, z0), то уравнение плоскости, проходящей через точку М0 перпендикулярно вектору нормали (A, B, C) имеет вид: 

A(x – x0) + B(y – y0) + C(z – z0) = 0.

 Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор  - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору . Тогда скалярное произведение

×= 0


Некоторые теоремы о дифференцируемых функциях