Вычисление производной Дифференциал функции

Математика задачи примеры решения

Угол между прямыми на плоскости.

 Определение. Если заданы две прямые y = k1x + b1, y = k2x + b2, то острый угол между этими прямыми будет определяться как

.

Две прямые параллельны, если k1 = k2.

Две прямые перпендикулярны, если k1 = -1/k2.

 Теорема. Прямые Ах + Ву + С = 0 и А1х + В1у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = lА, В1 = lВ. Если еще и С1 = lС, то прямые совпадают.

  Координаты точки пересечения двух прямых находятся как решение системы двух уравнений.

Уравнение прямой, проходящей через данную точку

перпендикулярно данной прямой.

  Определение. Прямая, проходящая через точку М1(х1, у1) и перпендикулярная к прямой у = kx + b представляется уравнением:

Расстояние от точки до прямой.

Теорема Лагранжа

  Пусть функция y=f(x) непрерывна на отрезке [a, b] и дифференцируема в интервале (a, b). Тогда существует хотя бы одна точка сÎ(a, b), для которой выполняется условие: .

Доказательство. Составим уравнение хорды АВ, соединяющей точки графика функции A(a; f(a)) и B(b; f(b)):

.

Отсюда ордината хорды у=. Рассмотрим функцию . Функция F(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (a, b), так как функция f(x) непрерывна на [a, b] и дифференцируема на интервале (a,b).   . Таким образом, функция F(x) удовлетворяет всем условиям теоремы Ролля. Поэтому существует такая точка сÎ(a, b), что , откуда получаем утверждение теоремы. Геометрически теорема Лагранжа означает, что существует хотя бы одна точка сÎ (а, b) такая, что касательная, проведенная к графику функции в точке (с; f (с)), параллельна хорде АВ.

 Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и

В(3, 2, -1) перпендикулярно плоскости х + у + 2z – 3 = 0.

 Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор (1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали (1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

 Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 11×2 + 7×1 - 2×4 + D = 0; D = -21.

 Итого, получаем уравнение плоскости: 11x - 7y – 2z – 21 = 0.

 Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

 Находим координаты вектора нормали = (4, -3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0

D = -169

 Итого, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0


Некоторые теоремы о дифференцируемых функциях