Вычисление производной Дифференциал функции

Математика задачи примеры решения

Угол между прямыми на плоскости.

 Определение. Если заданы две прямые y = k1x + b1, y = k2x + b2, то острый угол между этими прямыми будет определяться как

.

Две прямые параллельны, если k1 = k2.

Две прямые перпендикулярны, если k1 = -1/k2.

 Теорема. Прямые Ах + Ву + С = 0 и А1х + В1у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = lА, В1 = lВ. Если еще и С1 = lС, то прямые совпадают.

  Координаты точки пересечения двух прямых находятся как решение системы двух уравнений.

Уравнение прямой, проходящей через данную точку

перпендикулярно данной прямой.

  Определение. Прямая, проходящая через точку М1(х1, у1) и перпендикулярная к прямой у = kx + b представляется уравнением:

Расстояние от точки до прямой.

Некоторые теоремы о дифференцируемых функциях

Теорема Ферма

Пусть функция y = f(x) определена в интервале (а, в) и принимает в точке с этого интервала наибольшее или наименьшее на (а, в) значение. Если существует f'(с), то f'(с) = 0.

Доказательство. Пусть, например, f(с) = М – наибольшее значение функции в интервале (а, в) и существует f'(с). По определению производной f'(с)=. При любом знаке Dх f(c+Dx)-f(c)0, так как f(с) – наибольшее значение функции в (а, в).

Если Dх>0, то   и, следовательно, f'(с)0. Если же Dх<0, то   и f'(с) ≥0. Следовательно, f'(с)=0.

Геометрически теорема означает, что касательная, проведенная к графику функции в точке (с; f(с)), параллельна оси Ох.

Теорема Ролля

Пусть функция y = f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (a, b) и f(a) = f(b) = 0. Тогда ее производная f'(х) обращается в нуль хотя бы в одной точке сÎ( a, b).

Доказательство. По условию функция y = f(x) непрерывна на отрезке [a, b], поэтому она достигает на [a, b] своего наибольшего М и наименьшего m значений. Если М = m, то функция постоянна на [a, b] и ее производная f'(х) = 0 во всех точках (a, b). Пусть теперь М ¹ m, тогда хотя бы одно из этих чисел, например, m ¹ 0. Поэтому существует точка сÎ( a, b) такая, что f(с) = m. Следовательно, по теореме Ферма f'(с) = 0.

Геометрически теорема означает, что если функция y = f(x) удовлетворяет теореме Ролля, то найдется хотя бы одна точка (с; f(с)), где сÎ(a;b), такая, что касательная к графику функции, проведенная в этой точке, параллельна оси Ох.

Теорема Лагранжа Пусть функция y=f(x) непрерывна на отрезке [a, b] и дифференцируема в интервале (a, b). Тогда существует хотя бы одна точка сÎ(a, b), для которой выполняется условие: .

Теорема Коши

Теорема Лопиталя (Правило Лопиталя) Пусть - функции, непрерывные на [а, b], дифференцируемые в(а, b);  при всех хb) и f(а) = (а) = 0. Примеры на применение правила Лопиталя.

Применение производной к исследованию функций

Интервалы монотонности. Экстремумы Функция у = f(х) называется возрастающей (убывающей) на некотором промежутке, если для любых значений x2>x1 этого промежутка выполняется условие f(x2) > f(x1)(f(x2) < f(x1)) . Теорема ( достаточное условие монотонности функции). Если непрерывная на отрезке [а, b] функция у = f(х) в каждой точке интервала (а, b) имеет положи­тельную (отрицательную) производную, то эта функция возрастает (убывает) на отрезке [а, b].

 Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и

В(3, 2, -1) перпендикулярно плоскости х + у + 2z – 3 = 0.

 Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор (1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали (1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

 Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 11×2 + 7×1 - 2×4 + D = 0; D = -21.

 Итого, получаем уравнение плоскости: 11x - 7y – 2z – 21 = 0.

 Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

 Находим координаты вектора нормали = (4, -3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0

D = -169

 Итого, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0


Некоторые теоремы о дифференцируемых функциях