Квадратная матрица Метод Гаусса

Математика задачи примеры решения

  Пример. Составить уравнение прямой, проходящей через левый фокус и нижнюю вершину эллипса, заданного уравнением:

Координаты нижней вершины: x = 0; y2 = 16; y = -4.

Координаты левого фокуса: c2 = a2 – b2 = 25 – 16 = 9; c = 3; F2(-3; 0).

Уравнение прямой, проходящей через две точки:

 Пример. Составить уравнение эллипса, если его фокусы F1(0; 0), F2(1; 1), большая ось равна 2.

 Уравнение эллипса имеет вид: . Расстояние между фокусами:

2c = , таким образом, a2 – b2 = c2 = ½

по условию 2а = 2, следовательно а = 1, b =  

Итого: .

Элементы линейной алгебры

Пример . Вычислить определитель:

по правилу треугольника.

Решение. Перемножим элементы главной диагонали определителя, затем – элементы, лежащие на параллелях к этой диагонали, и элементы из противоположного угла определителя согласно правилу треугольника. Элементы, входящие в формулу (1.2) со знаком минус строим аналогично, но относительно побочной диагонали.

Замечание. Если применить правило треугольника к определителю треугольного вида

,

то этот определитель будет равен произведению элементов главной диагонали, то есть .

Определение. Минором элемента определителя 3-го порядка называется определитель 2-го порядка, получающийся из данного определителя вычеркиванием строки и столбца, на пересечении которых стоит данный элемент.

Минор элемента , стоящего на пересечении i-й строки и j-го столбца определителя, обозначают М ij.

Например, для определителя

(1.3)

миноры:

Определители второго порядка Определение. Выражение называется определителем 2-го порядка.

Определители 3-го порядкаОпределение. Выражение

называется определителем 3-го порядка.

Алгебраическим дополнением элемента определителя 3-го порядка называется минор этого элемента, взятый со знаком плюс, если элемент стоит на пересечении строки и столбца с четной суммой номеров, и со знаком минус, если элемент стоит на пересечении строки и столбца с нечетной суммой номеров.

Пример. Вычислить определитель , разлагая его по элементам второй строки.

Определитель в правой части формулы называют транспонированным по отношению к определителю в левой части этой формулы. Если две строки (столбца) определителя равны, то определитель равен нулю. Если элементы какого-либо ряда определителя пропорциональны элементам параллельного ряда, то определитель равен нулю.

Пример. Вычислить определитель , используя свойства определителей.

Линейная алгебра.

Основные определения.

Определение. Матрицей размера m´n, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца.

А =

Основные действия над матрицами.

 Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.

Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной.

 Определение.  Матрица вида:

= E,

называется единичной матрицей.


Математика Дифференциальное исчисление линейная и векторная алгебра Пределы