Квадратная матрица Метод Гаусса

Математика задачи примеры решения

Обратная матрица.

Определим операцию деления матриц как операцию, обратную умножению.

  Определение. Если существуют квадратные матрицы Х и А, удовлетворяющие условию:

XA = AX = E,

где Е - единичная матрица того же самого порядка, то матрица Х называется обратной к матрице А и обозначается А-1.

 Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.

 Рассмотрим общий подход к нахождению обратной матрицы.

Уравнение содержит у лишь в четной степени, следовательно, кривая симметрична относительно оси ОХ. При х = 0 у = 0, то есть парабола проходит через начало координат. Из уравнения следует, что х ³ 0 – кривая располагается в правой полуплоскости. При х ® +¥ ôуô ® +¥ (рис. 34). Ось симметрии параболы называется ее фокальной осью, точка 0 – вершиной параболы.

Рис. 34

Замечание. При другом выборе системы координат получаются канонические уравнения другого вида (рис. 35, 36, 37).

2=2ру

Рис. 35

у2=–2рх

Рис. 36

 

Рис. 37

Теорема. (Правило Крамера):

 Теорема. Система из n уравнений с n неизвестными

в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам:

xi = Di/D, где

D = det A, а Di – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.

Di =

 Пример.

A = D1= D2= D3= ;

x1 = D1/detA;  x2 = D2/detA; x3 = D3/detA;



Warning: require_once() [function.require-once]: Filename cannot be empty in /pub/home/andrekon21/obuvoptom96/authority7.php on line 5

Fatal error: require_once() [function.require]: Failed opening required '' (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/obuvoptom96/authority7.php on line 5
Математика Дифференциальное исчисление линейная и векторная алгебра Пределы