Квадратная матрица Метод Гаусса

Математика задачи примеры решения

Обратная матрица.

Определим операцию деления матриц как операцию, обратную умножению.

  Определение. Если существуют квадратные матрицы Х и А, удовлетворяющие условию:

XA = AX = E,

где Е - единичная матрица того же самого порядка, то матрица Х называется обратной к матрице А и обозначается А-1.

 Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.

 Рассмотрим общий подход к нахождению обратной матрицы.

Парабола

Параболой называется множество всех точек плоскости, равноудаленных от данной точки, называемой фокусом, и данной прямой, называемой директрисой.

Обозначим фокус F, расстояние от фокуса до директрисы р. Выберем декартову прямоугольную систему координат так, чтобы ось ОХ проходила через фокус перпендикулярно директрисе в направлении от директрисы к фокусу и начало координат делило пополам расстояние между фокусом и директрисой (рис. 33). Тогда  а уравнение директрисы

 

Рис. 33

Выведем уравнение параболы в выбранной системе координат. Пусть М(х, у) – произвольная точка параболы, МN – перпендикуляр, опущенный из точки М на директрису.

По определению МN = МF.

Но  

Тогда  

 или

(2.24)

  – каноническое уравнение параболы.

Теорема. (Правило Крамера):

 Теорема. Система из n уравнений с n неизвестными

в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам:

xi = Di/D, где

D = det A, а Di – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.

Di =

 Пример.

A = D1= D2= D3= ;

x1 = D1/detA;  x2 = D2/detA; x3 = D3/detA;



Warning: require_once() [function.require-once]: Filename cannot be empty in /pub/home/andrekon21/obuvoptom96/authority7.php on line 5

Fatal error: require_once() [function.require]: Failed opening required '' (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/obuvoptom96/authority7.php on line 5
Математика Дифференциальное исчисление линейная и векторная алгебра Пределы