Квадратная матрица Метод Гаусса

Математика задачи примеры решения

Обратная матрица.

Определим операцию деления матриц как операцию, обратную умножению.

  Определение. Если существуют квадратные матрицы Х и А, удовлетворяющие условию:

XA = AX = E,

где Е - единичная матрица того же самого порядка, то матрица Х называется обратной к матрице А и обозначается А-1.

 Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.

 Рассмотрим общий подход к нахождению обратной матрицы.

Уравнение содержит только четные степени х, у, следовательно, кривая симметрична относительно осей координат. В первой координатной четверти уравнение имеет вид  при возрастании х от 0 до а у убывает от в до 0. Учитывая симметрию, можно сделать вывод о форме эллипса (рис. 29).

 

Рис. 29

Оси симметрии эллипса называются осями эллипса, точка их пересечения 0 – центром эллипса. Ось, на которой расположены фокусы, называется фокальной осью. Точки пересечения эллипса с осями называются вершинами эллипса (А1, А2, В1, В2). Отрезки А1А2 и В1В2, а также их длины 2а и 2в называются соответственно большой и малой осями эллипса. Числа а и в называются соответственно большой и малой полуосями эллипса.

Отношение половины расстояния между фокусами к большой полуоси называется эксцентриситетом эллипса. e < 1.

Эксцентриситет характеризует форму эллипса: чем меньше эксцентриситет, тем меньше его малая полуось в отличается от большой полуоси а, то есть тем меньше вытянут эллипс вдоль фокальной оси

Пример 14. Эллипс, симметричный относительно осей координат, проходит через точки  и  Написать его уравнение, найти эксцентриситет.

Решение. Координаты точек М и А должны удовлетворять уравнению (2.22):  Решив систему, получим  тогда уравнение эллипса    

Теорема. (Правило Крамера):

 Теорема. Система из n уравнений с n неизвестными

в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам:

xi = Di/D, где

D = det A, а Di – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.

Di =

 Пример.

A = D1= D2= D3= ;

x1 = D1/detA;  x2 = D2/detA; x3 = D3/detA;



Warning: require_once() [function.require-once]: Filename cannot be empty in /pub/home/andrekon21/obuvoptom96/authority7.php on line 5

Fatal error: require_once() [function.require]: Failed opening required '' (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/obuvoptom96/authority7.php on line 5
Математика Дифференциальное исчисление линейная и векторная алгебра Пределы