Вычисление производной Дифференциал функции

Математика задачи примеры решения

Элементы векторной алгебры.

 Определение. Вектором называется направленный отрезок (упорядоченная пара точек). К векторам относится также и нулевой вектор, начало и конец которого совпадают.

 Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора.

 Определение. Векторы называются коллинеарными, если они расположены на одной или параллельных прямых. Нулевой вектор коллинеарен любому вектору.

 Определение. Векторы называются компланарными, если существует плоскость, которой они параллельны.

 Коллинеарные векторы всегда компланарны, но не все компланарные векторы коллинеарны.

 Определение. Векторы называются равными, если они коллинеарны, одинаково направлены и имеют одинаковые модули.

  Всякие векторы можно привести к общему началу, т.е. построить векторы, соответственно равные данным и имеющие общее начало. Из определения равенства векторов следует, что любой вектор имеет бесконечно много векторов, равных ему.

Односторонние пределы

 Теорема . Если в точке а существуют пределы функций f(х) и g (x) и при этом , то существует и предел частного , причем .

 Теорема 4. Если функция f (x) имеет предел в точке а, отличный от нуля, то функция  также имеет в этой точке предел, причем .

 Докажем для примера, что .

  Пусть , .

  Так как , то f(x) = A + a(x), где a(x) ® 0 при x ® a, а так как , то g(x) = В + b(x), где b(x) ® 0 при x ® a.

  Тогда f (x) ± g(x) = [A + a(x)] ± [В + b(x)] = (А ± В) + (a(x) ± b(x)), где a(x) ± b(x) ® 0 при x ® a как алгебраическая сумма бесконечно малых a(x) и b(x).

 Таким образом, функция f (x) ± g(x) отличается от числа А ± В на бесконечно малую и, следовательно, это число является пределом суммы функций f(x) и g(x), то есть имеем .

  Отметим, что при вычислении пределов сформулированные выше теоремы о пределах, как правило, не "работают", а попытка их применения приводит в итоге к неопределенности того или иного вида. Например,

  , , ,

  , .

  Рассмотрим на примерах основные приёмы раскрытия неопределенностей.

  Заметим, что необходимо выяснить, что именно эту неопределённость "вносит", и постараться избавиться от выражения, вносящего неопределённость.

Пример . Найти Пример. Найти пределы: , ,

Некоторые признаки существования предела функции Не всякая функция имеет предел, даже будучи ограниченной. Например, sin x при x ® ¥ предела не имеет, хотя £ 1.  Укажем два признака существования предела функции.

Первый и второй замечательные пределы

Теорема. Предел отношения синуса бесконечно малой дуги к самой дуге, выраженной в радианах, равен единице, то есть   .  Этот предел называют первым замечательным пределом. С его помощью вычисляют пределы выражений, содержащих тригонометрические функции.

Непрерывность функции Функция f(x), определенная на множестве Х, называется непрерывной в точке , если

Пример. Функция   является непрерывной справа в точке х = 0, слева же от этой точки она вообще не определена.

Линейная зависимость векторов.

  Определение. Векторы  называются линейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременно ai , т.е. .

Если же только при ai = 0 выполняется , то векторы называются линейно независимыми.

  Свойство 1. Если среди векторов  есть нулевой вектор, то эти векторы линейно зависимы.

  Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.

 Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.

 Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.

 Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.

 Свойство 6. Любые 4 вектора линейно зависимы.


Некоторые теоремы о дифференцируемых функциях