лучшее для роста мышц, без побочек как принимать туринабол хорошые результаты без проблем
Вычисление производной Дифференциал функции

Математика задачи примеры решения

Система координат.

 Для определения положения произвольной точки могут использоваться различные системы координат. Положение произвольной точки в какой- либо системе координат должно однозначно определяться. Понятие системы координат представляет собой совокупность точки начала отсчета (начала координат) и некоторого базиса. Как на плоскости, так и в пространстве возможно задание самых разнообразных систем координат. Выбор системы координат зависит от характера поставленной геометрической, физической или технической задачи. Рассмотрим некоторые наиболее часто применяемые на практике системы координат.

Декартова система координат.

 Зафиксируем в пространстве точку О и рассмотрим произвольную точку М.

Вектор  назовем радиус- вектором точки М. Если в пространстве задать некоторый базис, то точке М можно сопоставить некоторую тройку чисел – компоненты ее радиус- вектора.

 Определение. Декартовой системой координат в пространстве называется совокупность точки и базиса. Точка называется началом координат. Прямые, проходящие через начало координат называются осями координат.

1-я ось – ось абсцисс

2-я ось – ось ординат

3-я ось – ось апликат

  Чтобы найти компоненты вектора нужно из координат его конца вычесть координаты начала.

 Пример 14. Функция  в точке х = 1 не определена, но , то есть = . Доопределим функцию в точке, положив ее значение в этой точке, равным трем.

Тогда функция

становится непрерывной в точке 1.

Точка разрыва функции, не являющаяся точкой разрыва первого рода или точкой устранимого разрыва, является точкой разрыва второго рода.

 Пример 15. Функция  в точке 1 имеет разрыв второго рода, так как  и .

 Пример 16. Исследовать на непрерывность функцию .

 Решение. Функция не определена в точке 0. Тогда . И функция в точке х=0 имеет разрыв второго рода.

 Замечание. В последних двух примерах мы ввели символическую запись  которая означает, что знаменатель такой дроби стремится к нулю, вся дробь стремится к бесконечности, но вовсе не означает, что мы производим деление на 0, что невозможно.

  И в заключение рассмотрим свойства функций, непрерывных на отрезке.

  Все элементарные функции непрерывны в области определения Так что  всюду непрерывна, так как всюду определена, а, например, функция  разрывна в точке .

Теорема Больцано-Коши об обращении функции в нуль.

Уравнение плоскости по одной точке и двум векторам,

 коллинеарным плоскости.

 Пусть заданы два вектора  и , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы  должны быть компланарны.

 Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали.

  Теорема. Если в пространстве задана точка М0(х0, у0, z0), то уравнение плоскости, проходящей через точку М0 перпендикулярно вектору нормали (A, B, C) имеет вид: 

A(x – x0) + B(y – y0) + C(z – z0) = 0.

 Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор  - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору . Тогда скалярное произведение

×= 0


Некоторые теоремы о дифференцируемых функциях