Вычисление производной Дифференциал функции

Математика задачи примеры решения

Элементы векторной алгебры.

 Определение. Вектором называется направленный отрезок (упорядоченная пара точек). К векторам относится также и нулевой вектор, начало и конец которого совпадают.

 Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора.

 Определение. Векторы называются коллинеарными, если они расположены на одной или параллельных прямых. Нулевой вектор коллинеарен любому вектору.

 Определение. Векторы называются компланарными, если существует плоскость, которой они параллельны.

 Коллинеарные векторы всегда компланарны, но не все компланарные векторы коллинеарны.

 Определение. Векторы называются равными, если они коллинеарны, одинаково направлены и имеют одинаковые модули.

  Всякие векторы можно привести к общему началу, т.е. построить векторы, соответственно равные данным и имеющие общее начало. Из определения равенства векторов следует, что любой вектор имеет бесконечно много векторов, равных ему.

 Пример. Функция  является непрерывной справа в точке х = 0, слева же от этой точки она вообще не определена.

 Говорят, что функция  непрерывна на множестве Х, если она непрерывна в каждой точке этого множества.

 Если функция  непрерывна в каждой точке отрезка [a, b], то говорят, что она непрерывна на этом отрезке, причем непрерывность в точке а понимается как непрерывность справа, а непрерывность в точке b – как непрерывность слева.

  Теперь переформулируем определение непрерывности в других терминах. Обозначим  и назовем его приращением аргумента в точке ,  будем называть приращением функции в точке .

Теорема. Функция  непрерывна в точке  тогда и только тогда, когда бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции в этой точке, то есть

 Докажем теорему. Пусть  непрерывна в точке . Тогда  по определению. Если обозначить , то  и тогда равенство, определяющее непрерывность, можно переписать так:  или  и тогда  Аналогично доказывается это утверждение в другую сторону: если , то .

  Сформулируем основные теоремы о непрерывных функциях. [an error occurred while processing this directive]

 Теорема. Пусть заданные на одном и том же множестве Х функции  и  непрерывны в точке . Тогда функции ,  и  (если ) непрерывны в точке .

 Теорема (о непрерывности сложной функции). Пусть функция  непрерывна в точке , а функция  непрерывна в точке . Тогда сложная функция  непрерывна в точке .

  Всевозможные арифметические комбинации простейших элементарных функций, которые рассматривают в школьном курсе алгебры и начал анализа, мы будем называть элементарными функциями. Например,  является элементарной.

Линейная зависимость векторов.

  Определение. Векторы  называются линейно зависимыми, если существует такая линейная комбинация , при не равных нулю одновременно ai , т.е. .

Если же только при ai = 0 выполняется , то векторы называются линейно независимыми.

  Свойство 1. Если среди векторов  есть нулевой вектор, то эти векторы линейно зависимы.

  Свойство 2. Если к системе линейно зависимых векторов добавить один или несколько векторов, то полученная система тоже будет линейно зависима.

 Свойство 3. Система векторов линейно зависима тогда и только тогда, когда один из векторов раскладывается в линейную комбинацию остальных векторов.

 Свойство 4. Любые 2 коллинеарных вектора линейно зависимы и, наоборот, любые 2 линейно зависимые векторы коллинеарны.

 Свойство 5. Любые 3 компланарных вектора линейно зависимы и, наоборот, любые 3 линейно зависимые векторы компланарны.

 Свойство 6. Любые 4 вектора линейно зависимы.



Warning: require_once() [function.require-once]: Filename cannot be empty in /pub/home/andrekon21/obuvoptom96/authority7.php on line 5

Fatal error: require_once() [function.require]: Failed opening required '' (include_path='.:/usr/local/php5.2/share/pear') in /pub/home/andrekon21/obuvoptom96/authority7.php on line 5
Некоторые теоремы о дифференцируемых функциях